
A D-A253 327 Technical Report

11111111 Jill 1111, 1111111111 Jl l 1111f CM UISEI-92-TR-9llill ll tli 11 11il~t I~ II ~uESD-TR-92009

Carnegie-Mellon University

- Software Engineering Institute

Parallels In Computer-Aided Design
Framework and Software Development
Environment Efforts

Susan A. Dart DTIC
May 1992 lELECTI fliz ~~JU 3.0,19i .1

/ /,JUL 19
3

..

/ . ,

92-20 293
- ' ii II Il lllll lll Ulll



The following statement of assurance s more than a statement reorered to comply vithl the federal lawi Th~s is a sinrcere statement by the uriversity to assure that all
oeoole are .ncluded rr the diversify which makes Clarnegie Mellon an excilirro place Carr'rri, Meli .whpi to "'lude pecOic As tho.t ervitd lo rac olor rarnoal
ongro sex handicap religionc creed. aricestry belief. age veteran status of - al -t oatio

Carnegie Mellon LJrroersrt does rot diiicr~rrrnale and Carnegie Mellon University i reouirer nol to discrimrrate iradrrs,srrr and rimploymr or tme itass no rar>
color national origin, sex or handicao in voliaton of Title VI of the Civil Rights Act of 1964 Title IX of th. Educational Amenrimeirts of 1972? and Sect Jr S04 of !hfe
Reoahcrl,ton Art of 1973 or other fedlerl sate, or local laws or executive orders In addition Carnegie Mellon does sot iiscr-n ate in adrsons and ei-pcNrrrel on
the basis of religion creed ancestry brle age veteran status or sexual orientatior n violion of any federal irate or lora laws (it exec t rders rrr,res conicern
rrg application ot I ho ric -riirt isd rot tn the Provost Carnegie Mellon lirrers ty 5000 frbls Av(rirreP P ttsrrrlr PA 11,21A erro 412, 26l5 6611 or Itte
Vre Presdent for Enrollment Carnegie Mellon lJrrvers,ty, 5000) Forbes Averue ttsburgh PA 15213 telephorre (1t21 2ff ?056



Technical Report
CMU/SEI-92-TR-9

ESD-TR-92-009
May 1992

Parallels in Computer-Aided Design Framework
and Software Development Environment Efforts

Susan A. Dart
Environments Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt. USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright 0 1992 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for Do personnel. DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Atn: FDRA, Cameron Station. Alexandria. VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc.. 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213.

Use of any trademarks in this report is not intended in any way to infringe on the rights ot the trademark holder.



Table of Contents

1 Introduction 1

2 State of Automated CM in the SDE Community 3

3 State of Environment Technology
in the SDE Community7

4 State of Automated CM In the CAD Community 9

5 State of Environment Technology
In the CAD Communityl1

6 Comparisons Between the Communities 13

7 Conclusion 17

8 Acknowledgments 19

References 21

AooessiOn For

NTIS GRA&I
DT[C TAB 0-
Unannoufnc 0 d 1

Just-, iC2tioC

Avalia litY Codes
AvzAI and/or

Dist I Special

CMU/SEI-92-TR-9 'DTIC Q.UAL T y fl4BFWC D X



List of Figures

Figure 6-1 Sequence of Events in Understanding Concepts 13
Figure 6-2 Differences Between CAD and SDE Notions 14

CMU/SEI-92-TR-9



iv CMUiSEI-92-TR-9



Parallels in Computer-Aided Design Framework and
Software Development Environment Efforts

Abstract: This paper is an attempt to raise awareness about the similarities
between the efforts of the software development environment (SDE)
community and the electronic computer-aided design (CAD) framework
community. Apparently, SDE and CAD engineers are not aware of what is
happening in each other's fields, yet cross-pollenization of efforts would assist
progress. Both communities are addressing the same problems of providing
configuration management (CM), tool integration, and process management
support in their environment. Each community can benefit from the other since
both have similar needs and have found, and are finding, similar solutions. It is
particularly useful to consider collaborative efforts as both communities are
evolving towards standardization.

1 Introduction

The SDE community is focusing on the problems of CM, third-party tool integration, and pro-
cess modelling, as is the CAD community. Commercially, this can be seen from the plethora
of third-party tools for CM, computer-aided software engineering (CASE) tools, third-party de-
sign kits, and tool and design management frameworks. Also, books about software engineer-
ing environments [Long 91] and electronic design automation frameworks have been
appearing [Rammig 91], as well as articles about standardization efforts in reference models
for environments [Brown92], tool integration [Zarrella 90], and agreement upon a universal de-
sign automation framework, such as the CAD Framework Initiative (CFI) [Malasky 91]. Thus,
from a software engineering point of view, it is clear that both communities are currently tack-
ling similar solutions for supporting automated CM and framework technology that enables in-
tegration of third-party tools and support for process (task) management. In particular, CAD
framework vendors have to address the needs of both communities, since they need a SDE
in order to develop their CAD framework for their customers.

The following sections give an overview of the key concepts and challenges for CM support
and environments in both communities. A discussion follows summarizing the similarities and
differences between the communities, and the conclusion suggests how each community
could benefit from the other.

CMU/SEI-92-TR-9



2 CMU/SEI-92-TR-9



2 State of Automated CM in the SDE Community

In the software engineering community, the standard definition of CM involves four require-
ments: identification, control, status accounting, and audit and review. The paper by Dart ex-
tracts 15 CM concepts from existing SDEs and tools [Dart 91]. These concepts indicate that
what is implemented in CM systems really goes beyond that standard definition into support
for manufacture, process modeling and teamwork. These 15 concepts are:

1. Repository: captures CM information and stores versions of files as immuta-
ble objects, as in RCS [Tichy 82].

2. Distributed component: allows distributed users to have access to a
centralized repository; to them, the CM facilities seem to span the network of
heterogeneous workstations, as in Sherpa DMS [Deitz 91].

3. Context management: captures in a domain-specific manner the working
context for the user, thereby eliminating the need for users to remember how
they got to a particular working status and what all the data items,
relationships, and tools are in that context, as in Powerframe [Johnson 89].

4. Contract: represents a formal plan for, and a record of, a unit of work on a
configuration item, as in ISTAR [Graham 88].

5. Change request: assists in driving the process of change to configurations
and keeping an audit trail of the changes, as in LIFESPAN [Whitgift 91].

6. Life-cycle model: represents the process of developing and maintaining
configurations based on a predefined life cycle, as in CCC [Softool 87].

7. Change set: represents a logical change to a product and a means of
creating any version of a configuration that is not necessarily dependent on
the latest version of that configuration, as in ADC [SMDS 89].

8. System modeling: abstracts the notion of a configuration from an instance
of it, and, by fully describing the configuration, enables tools to maintain the
integrity of the conilguration, as in Jasmine [Marzullo 86].

9. Subsystem: provides a means to limit the effect of changes and
recompilation, and a means for the environment to check the validity of
combining parts of a system, as in Rational [Feiler 88].

1O.Object pool: optimizes the need for regenerating objects and maximizes the
sharing of derived objects, as in DSEE [Leblang 85].

11 .Attribution: permits the description of a system at a higher level of
abstraction via its characteristics rather than in terms of a lengthy composition
list of files, as in Adele [Estublier 85].

12.Consistency maintenance: enables the environment to identify any
inconsistencies and to preserve consistencies in creating and reusing
configurations, as in CMA [Ploedereder 89].

CMU/SEI-92-TR-9 3



13.Workspace: provides isolation of work between engineers and distinguishes
between a global, long-term repository for immutable objects and a private,
shorter-term repository for mutable objects, as in shape [Mahler 88].

14.Transparent view: gives a viewing mechanism for a configuration from the
public repository with protection against unauthorized access, as in SMS
[Cohen 88].

15.Transaction: synchronizes and coordinates teams of engineers changing
the same or different parts of a system, as in NSE [Feiler 90].

(Note that although the examples for the concepts distributed component and context man-
agement were taken from CAD frameworks, variations on these concepts exist in some
SDEs.)

No single CM system provides all the above concepts, although a survey of CM systems indi-
cates that CM systems are approaching a common set of concepts in the SDE arena. Yet
there is a lack of common terminology; no well-understood vocabulary exists for software en-
gineers to discuss CM. Different terms are meant to be the same concept while similar terms
mean different concepts. Implementations of the same concept can have different semantics.
For instance, in various implementations of version graphs, varying semantics for merging
branches and different purposes for branches can be found [Feiler 91]. The lack of a common
terminology inhibits progress as there is no standard specification or model for CM.

At the Software Engineering Institute (SEI), we are attempting to address the need for a stan-
dard CM model by unifying the above concepts into a CM services model. This model will be
a conceptual framework for a set of well-defined services. "Service" is meant as a particular
CM functionality. "Well-defined" means that a service is defined in such a way that its seman-
tics, interface, and other properties are understood enough to be included in framework refer-
ence models and to be implemented, albeit with possibly different mechanisms.

The services in the model take into account the software engineering marketplace's need to
apportion and distribute functionality. That is, CASE tools and environments provide parts of
CM solutions and customers buy these pieces as building blocks for their solution (since no
single CM system is a panacea). The CM solution is generally spread across tools. The
services model, in essence, is intended to provide plug in/plug out, "black box" capabilities so
that over time, services could be replaced with new ones. Examples of services are repository,
system modelling, version control, derived object management, change management, version
differentiation, and so on. The model addresses upward compatibility, since no single environ-
ment will emerge as the most popular given tiat customers have their existing solution and no
off-the-shelf solution exactly matches the homegrown solution.

The future needs for CM can be characterized by five aspects: technology, process orienta-
tion, management, standardization, and politics. New technology is needed, such as support
for distributed CM capabilities, interoperability between CM systems, customizable CM sys-
tems, and a global perspective on CM repositories. The problems of tool integration with CM
capabilities must be addressed. Better CM process definition and implementation of

4 CMU/SEI-92-TR-9



processes are required. More support for management in decisions about CM systems, such
as the buy versus build decision, and in evaluating CM systems is crucial. Reference models
for environments are being standardized, as are the CM strvices involved with them. Govern-
mental contracts will eventually require contractors to have a certain level of CM support in
their environment, so the ramifications of this requirement need to be addressed.

As CM is examined more closely in relation to software engineering in toto, several questions
emerge, with the most interesting technical one asking 'What part of the software engineering
problem is CM?" It is not clear whether general software enginearing issues, such as team
spport, process support, and tool integration are areas that are part of CM, yet CM vendors
generally need to address these issues when giving the customer an off-the-shelf solution.
This question also arises under the guise of 'Where do we put CM?" when committees are
trying to decide upon the architecture for their environment framework reference models.

At the moment, a long-term CM solution that supports long-lived, changing software for large
organizations with diverse software applications will not be found in a single CM tool, nor in a
single environment. Other aspects of software engineering need to be addressed in unison,
such as process modelling, software architectures, team support, and tool integration. CM has
an impact on these aspects and vice versa. Thus, CM is a keystone to the software engineer-
ing problem and should not be viewed in isolation from other software engineering problems
and solutions. Good CM support in an environment will greatly enhance its usability, whereas
inadequate CM support makes an environment useless.

CMU/SEI-92-TR-9 5



6 CMU/SEI-92-TR-9



3 State of Environment Technology
in the SDE Community

An SDE is an environment that assists software engineers in developing and maintaining soft-
ware. There has been, and continues to be, a lot of work on environments in the SDE commu-
nity. The book on SDEs edited by Long [Long 91] and the symposium proceedings of ACM
SIGSOFT/SIGPLAN [Henderson 88] provide examples of work being done. Two major areas
of concern are tool integration for third-party CASE tools, and software process modelling for
describing and automating the steps involved in developing software. International conferenc-
es and workshops are devoted to these topics [Dowson 91], [Fuggetta 91].

One way to begin examining environment technology is by categorization of environments, as
done by Dart, Ellison, Feller and Habermann, which suggests that SDEs, from a user's per-
spective, fall into four categories: language-centered, structure-oriented, toolkit, and method-
based environments [Dart 87]. Other categorizations have been published presenting varying
perspectives [Perry 91], [Penedo 88]. The various categorizations show that different criteria
can be chosen for categorizing and that environments generally don't fit exactly into one cat-
egory.

A major concern these days is that of tool integration: what it means and how the notion of
"openness" for third-party tool integration can be supported. The paper on tool integration
technologies by Brown, Feller and Wallnau [Brown 91] divides the tool integration solution into
Integrated project support environments (IPSEs) such as those based on the international
standard, the portable common tool environment (PCTE) [Boudier 88], and into tool
coalitions that are based on vendor-supplied tool integration facilities at the source code lev-
el. PCTE is a set of standardized, public tool interfaces to basic environment mechanisms
which support a common interface to a set of cooperating, data sharing tools. It is intended to
be a solution to a variety of integration and portability problems encountered when running
multiple tools from multiple vendors on multiple platforms. PCTE essentially provides a cen-
tralized database of schemas. The IPSEs are intended to provide an all encompassing infra-
structure that enables tool integration and provides features for life-cycle activities (such as
specification, design, and coding) and cross-life-cycle activities (such as configuration man-
agement, project management, and documentation production). The CASE coalitions provide
a piecemeal, esoteric solution where vendors sign a pact and integrate their tools to form a
tightly coupled set of tools to suit particular life-cycle activities, such as design and coding.
Overall, the IPSE and the tool coalition approaches provide benefits but require tradeoffs.

Another approach to the tool integration problem is to try to avoid it by providing engineers with
a meta-tool, a tool that enables them to rapidly develop their own, highly customized set of
CASE tools. (Examples include the Virtual Software Factory [Bloor 90] and the Tool Builder's
Kit (Alderson 91].) These serve as a repository for the logical model of the environment as well
as for some elements of the physical implementation. The tools are developed using the pro-

CMU/SEI-92-TR-9 7



vided formalism and run under the provided runtime environment and with the user-defined
process model.

For process modelling, the design of formalisms for describing processes and the develop-
ment of mechanisms for implementing them are active research topics. Environments built on
top of PCTE, such as the EAST, Entreprise II and ALF environments [Oquendo 90] try to pro-
vide flexible process modelling capabilities, but must address difficulties such as the need for
common services (for complex object passing and sharing) and active mechanisms (for noti-
fication and triggers).

At the SEI, we are bringing together terminology and concepts that assist in understanding the
issues for tool integration and process modelling which can he incorporated into an environ-
ment framework [Brown 911.

8 CMUISEI-92-TR-9



4 State of Automated CM in the CAD Community

Katz gives an overview of the basic versioning capabilities for CAD frameworks in which he
distinguishes between seven classes of mechanisms [Katz 90]. These include:

1. Organization of space of versions: represents a repository with a version
tree of objects.

2. Dynamic configurations and dereferencing: refer to static and dynamic
binding of versions to configurations and consistency checking.

3. Hierarchical compositions across versions: determine the structure and
composition of configurations.

4. Alternative groupings of versions: refer to partitioning of a system and
regrouping of objects based on certain properties.

5. Distinctions of Instances versus definitions: make a clear distinction
between the instance and definition of an object and that relationship.

6. Change notification and propagation: relate to time-based notification and
acknowledgment of events, and propagation of changes.

7. Workspace organization: provides a means for multiple designers to share
objects and ways of providing multiple repositories (private, group/project,
and public/archive).

Katz concludes that the versioning technology for the CAD community has variations on a
theme; many of the mechanisms are similar. Thus, there is a need for a unified model of mech-
anisms and a unified terminology. But the real challenge of the future is to create a single, tai-
lorable framework for CAD encompassing all of the versioning capabilities above. Perhaps the
work of the CFI will address this challenge.

From a software engineering perspective, it appears that, in general, commercial CAD frame-
works generally offer a version control facility along with a notification facility. Most of the other
classes of mechanisms tend to be in research CAD frameworks and fall into the database re-
search arena. The CM problems evolve around the need to deal with the existence of multiple
versions of chips that are to be used in different chip configurations as well as "competitive
tools", i.e., allowing for the coexistence of multiple versions of tools where any version can be
used at any time.

CMU/SEI-92-TR-9 9



10 CMU/SEI-92-TR-9



5 State of Environment Technology
in the CAD Community

A CAD framework is an environment that assists hardware engineers in designing, drawing
and simulating circuits. It is intended to provide a broad spectrum of services relating to data,
task, process and methodology management [Harrison 90]. There is a significant amount of
work on environments in the CAD community. The book on electronic design frameworks by
Rammig and Waxman provides examples of tool integration strategies and frameworks [Ram-
mig 91], and the proceedings of the Design Automation Conference provides a wide range of
issues in the CAD community [ACM 91]. When examining CAD frameworks, it appears that
CAD framework vendors sell two kinds of products. One is a tool framework that encompasses
tightly integrated tool sets with inter-tool communication, a common representational data-
base, and version control; these optimize the performance of combinations of vendor's prod-
ucts via source code integration. The second is a design-management framework that assists
in the process of designing ana testing circuits by providing data management capabilities
such as CM, data flow, and event triggers; tool run management for sequencing and executing
tools; and tool encapsulation for enabling an "open" architecture for integrating third-party
tools.

The goal of the CFI efforts is to provide a standardized framework for CAD tools that serves
as a general, common software infrastructure for efficiently building, maintaining and config-
uring open, integrated CAD environments. This involves developing guidelines for enabling
cooperation of CAD tools. Such work is progressing within the CFI.

CMU/SEI-92-TR-9 11



12 CMU/SEI-92-TR-9



6 Comparisons Between the Communities

There are many similarities in the technological solutions that each community uses, and
some differences that make for varying levels of complexity in the solutions.

Similarities in Concepts and Technology
It is clear that both communities would like a common terminology for CM concepts. CM mech-
anisms appear very similar, and many are variations on a theme. For tool integration, the need
for a standard framework is common to both communities, as are the natures of the problems
and solutions. The challenges of the future-tool integration, data management, process im-
plementation, and managing multiple methodologies-appear the same for both communities.
From a software engineering perspective, the CFI work attempts to define an infrastructure
that is similar to many efforts in the SDE community for defining reference models for IPSEs.

Research Systems Commercial Systems

Many mechanisms

I
Concepto and
classification

Standardization onframeworks/ Consolidation of Definition of
Infrastruct ures efforts ervices

Figure 6-1 Sequence of Events In Understanding Concepts

Scanning the literature published in the SDE and CAD communities shows that the work on
environments and CM is progressing in a similar fashion. Figure 6-1 shows a simplified and
generalized view of the process of the evolution towards an understanding of the concepts and
mechanisms. Researchers experiment with ideas and create prototype systems. Commercial
vendors create production-quality tools, sometimes using research ideas but scaling them up
to industrial strength, and sometimes coming up with innovative mechanisms. Surveying all
the research and commercial systems gleans a plethora of mechanisms used. Technology an-
alysts then start to extract concepts from the mechanisms and begin to classify them and de-
velop a vocabulary enabling engineers to discuss the technology. From here begins the work

of standardization of mechanisms, concepts and frameworks, along with the definition of

classes of services that provide certain functionality. Also, different groups tend to realize that

CMU/SEI-92-TR-9 13



there are similarities in efforts, and will combine forces to consolidate work efforts. This hap-
pens in cycles, for each new round of technology.

A good example is with CM in the SDE community. In the past, most CM systems were home-
grown, that is, built in-house by the organization since it was impossible to buy a CM system.
Researchers started experimenting with developing third-party tools, and start-up companies
began to develop them from their experience in industry and from research. Today we have a
flourishing CM tool industry with many tools and environments providing CM capabilities. As
customers and industry analysts attempt to evaluate all these tools and understand the many
mechanisms available, it is necessary to find a means for understanding such. Places such as
the SEI examine technology and extract the concepts and classify the tools which helps the
customers understand the state of the technology. Upon further examination of the plethora of
tools many similarities are seen. As industry sees trends of variations on themes, it becomes
clear that consolidation of efforts and standardization are possible. This then evolves into a
standardization of common CM services, which is beginning today.

Th. SDE community is at the level of standardization, definition of services, and consolidation
of efforts for tool integration (with PCTE at least) and CM. It appears that the CAD community
is also at this level with its CFI efforts.

Differences Between the Communities
The communities appear to differ on the degree of domain specificity that they are dealing
with. The differences relate to how well we understand objects, how objects are used, the way
objects are created, the breadth of the problem domain, the complexity of transformations, and
the understanding of the design process. These are highlighted in Figure 6-2:

CAD Community SDE Community
Known objects (pin, unit, etc.) Unknown objects (file, procedure, etc.)

Uses reusable objects Builds new objects

Many views (layout, etc.) Many instances (compilation, etc.)

Domain specific Operating-system based

Many tool transformations Compiler-based transformations

Known design process Ad hoc design process

Figure 6-2 Differences Between CAD and SDE Notions

In the CAD community, engineers deal with known objects, objects that have some semantics
associated with them such as pins or logic units. To create new objects, engineers can reuse
existing parts of chip designs. For a description of an object, many different views (such as
netlist and logic schemata) can be seen. CAD environments are specifically suited to the do-
main of hardware design and therefore the hardware designer. There are many tools in a CAD
framework that transform a description into a different view. Thus, a CAD framework is multi-

14 CMU/SEI-92-TR-9



tool oriented. The CAD community uses the standard language VHDL as a formalism for de-
scribing hardware designs. The design process of creating an integrated circuit is fairly well
understood, and the cost and time for developing a particular version is known. There are
many tools that aid the design process in ways such as analyzing and simulating the circuit.

In the SDE community, the lowest granularity of a well understood object is that of a file or pro-
cedure, and there generally are no real semantics associated with these. To create new ob-
jects, programmers tend to create new code by editing and compiling rather than reusing
existing code, thus creating instances of object code. SDEs are based on a specific operating
system in most cases and are intended to be fairly generic and suited to any kind of software
engineer in any domain. Most of the transformations done are carried out via the compiler
since SDE's are very single tool oriented, and that tool is the compiler. No single, standard pro-
gramming/design language exists for software engineers to describe their applications. The
software design process is still an ad-hoc one and very few tools exist to aid the designer in
going from one level of abstraction to the next.

While differences can be found between the ways the CAD and SDE communities do their
work and the kinds of tools that are available to them, the biggest gap is really that neither com-
munity seems to be aware of what the other is doing. (Obviously this is a generalization since
some people do span the gap.) The future looks promising though, since several hardware-
software workshops are being held and various groups such as the architecture group of the
CFI and a PCTE group are willing to look closely and seriously at the similarities and differenc-
es between the communities. For the SEI, we are interested in finding "the best practice" so
that we can help improve the state of the practice. To find the best practice, it is necessary to
be involved with as many communities as possible.

CMU/SEI-92-TR-9 15



16 CMU/SEI-92-TR-9



7 Conclusion

SDE and CAD CM technology have a large degree of overlap. In both communities, there is a
need for a unified CM model to assist in defining a CM vocabulary as well as a CM functionality
within the frameworks. There is a possibility that defining unified CM services across hardware
and software frameworks would have the benefit of common terminology, at least in the CM
arena, and would thus aid progress. It would be beneficial to avoid duplication of effort.

From a software engineering viewpoint, CAD and SDE environments are progressing in simi-
lar directions. Both are tackling the third-party tool integration problem either via the same
mechanisms, or by consensus through common models and interfaces. Research is continu-
ing on understanding process models and implementing them. The CAD frameworks are in-
tended to suit the particular domain of developing integrated circuits. SDE frameworks are
intended to suit all of the software engineering community. Domain specificity should enable
faster progress.

What can be learned by the software engineering community from the CAD efforts? One an-
swer concerns the user interface model and the design process. CAD frameworks present a
more intuitively obvious user interface that takes into account the domain of the user through
use of graphics, and by hiding as much of the underlying implementation of the tools as pos-
sible. Also, they provide automated support for the design process such as tools that help take
a chip design from one level of abstraction to the next via analyzing, synthesizing and simu-
lating.

What can be leamed by the CAD community from SDE work? One answer is teamwork, multi-
user support, and data modelling in the sense of consistency analysis. SDEs provide mecha-
nisms to allow multiple users to work in a synchronized and coordinated manner on the same
or parallel pieces of code, such as with transactions. Also, mechanisms are provided for de-
scribing the structure and characteristics of data and for identifying and inaintaining consisten-
cy between the data, such as checking for version skews and compatibility between source
code interfaces and bodies.

It would be beneficial for each community to be aware of each other's work. There are many-
fold advantages to broadening the concepts and mechanisms of each community. Perhaps it
is possible that a unified framework suiting SDE and CAD needs could become a reality one
day. Such a framework would offer the best of both worlds. The communities can cooperate
by reading each other's papers and attending each other's conferences and workshops.

There are many problems confronting SDEs. No doubt the CAD community is, or will have to
confront these problems too. Thus, any joint efforts will be the first steps towards cross fertili-
zation of ideas. The future problems confronting SDEs relate to technology (such as address-
ing new CM requirements), process (such as better process guidance and tailoring),
standardization (such as for CM services), and management (such as commitment of resourc-
es and assistance in helping management make'the 'buy vs. build" decision). In particular, the

CMUISEI-92-TR-9 17



technological problems concern interoperability between third-party CM tools, better support
for large software changes enabling a global perspective on CM repositories, tailoring CM
tools, distributed CM support, and framework infrastructures such as PCTE and object man-
agement systems. At the SEI, we are developing a CM services model to suit the future re-
quirements of SDEs, particularly frameworks based on the client/server model technology.
Our aim is to ensure that the CM services model is equally applicable to the CAD community.

18 CMU/SEI-92-TR-9



8 Acknowledgments

I would like to thank the following people for their useful advice, and discussion: Jay Brockman,
Walter Heimerdinger, Fred Long, Peter Feiler, Alan Brown, the attendees at the Third Interna-
tional Workshop on Electronic Design Automation Frameworks, and the SEI technical writers.

CMU/SEI-92-TR-9 19



20 CMU/SEI-92-TR-9



References
[ACM 91] ACM, IEEE Computer Society DATC. Proceedings of the 28th ACMWIEEE

Design Automation Conference June 17-21 San Francisco California. ACM,
IEEE, 1991.

[Alderson 91] Alderson, A. "Meta-CASE Tool Technology", pp. 81-90. Software Development
Environments and CASE Technology. Vol. 509, Lecture Notes in Computer
Science. New York, New York: Springer-Verlag, June, 1991.

[Bloor 90] Bloor, R. "The Software Tools' Software Tool", DECUSER (April 1990):
pp. 53(2).

[Boudier 88] Boudier, G., Gallo, T., Minot, R., and Thomas, I. "An Overview of PCTE and
PCTE+", pp. 248-257. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Engineering Environments.
Boston, Massachusetts: ACM, December 1988.

[Brown 92] Brown, A. W. and Feiler, P. H. The Conceptual Basis for a Project Support
Environment Reference Model (CMU/SE I-92-TR-2). Pittsburgh, Pennsylvania:
Software Engineering Institute, Carnegie Mellon University, January 1992.

[Brown 91] Brown, A. W., Feiler, P. H., and Wallnau, K. C. Understanding Integration in a
Software Development Environment (CMU/SEI-91-TR-31, ADA248119).
Pittsburgh, Pennsylvania: Software Engineering Institute, Carnegie Mellon
University, December 1991.

[Cohen 88] Cohen, E., Soni, D., Gleucker, R., Hasling, W., Schwanke, R., and Wagner, M.
"Version Management in Gypsy", pp. 210-215. Proceedings of the ACM
SIGSOFT/SIGPLAN Symposium on Practical Software Development
Environments, New York, New York: ACM, November 1988.

[Dart 91] Dart, S. A. "Concepts in Configuration Management Systems", pp. 1-18.
Proceedings of the 3rd International Workshop on Software Configuration
Management, New York, New York: ACM, June 1991.

[Dart 87] Dart, S. A.,Ellison, R., Feiler, P., and Habermann, N. "Software Development
Environments", IEEE Computer20, 11 (November 1987): pp. 18-28.

[Deitz 91] Deitz, D. "Pulling the Data Together". Mechanical Engineering. 112, 2
(February 1990): pp. 56-57.

[Dowson 91] Dowson, M., ed. Proceedings of the First International Conference on the
Software Process, Redondo Beach CA. Oct. 21-22, 1991. Los Alamitos,
California: IEEE Computer Society Press, 1991.

CMUISEI-92-TR-9 21



[Estublier 85] Estublier, J. "A Configuration Manager: The Adele Data Base of Programs", pp.
140-147. Workshop on Software Engineering Environments for Programming-
in-the-Large. Waltham, Massachusetts: GTE Laboratories, June 1985.

[Feiler 91] Feller, P. H. Configuration Management Models in Commercial Environments
(CMU/SEI-91-TR-7, ADA235782). Pittsburgh, Pennsylvania: Software
Engineering Institute, Carnegie Mellon University, March 1991.

[Feiler 88] Feller, P. H., Dart, S., and Downey, G. Evaluation of the Rational Environment
(CMU/SEI-88-TR-15, ADA198934). Pittsburgh, Pennsylvania: Software
Engineering Institute, Carnegie Mellon University, July 1988.

[Feller 90] Feiler, P. H. and Downey, G. Transaction-Oriented Configuration Management
(CMU/SEI-90-TR-23, ADA235510). Pittsburgh, Pennsylvania: Software
Engineering Institute, Carnegie Mellon University, November 1990.

[Fuggetta 91] Fuggetta, A., Conradi, R., and Ambriola, V., eds. Proceedings of the First
European Workshop on Software Process Modeling. Milan, Italy. 30-31 May
1991. Milan, Italy: AICA, 1991.

[Graham 88] Graham, M. and Miller, D. ISTAR Evaluation (CMU/SEI-88-TR-3, ADA201345).
Pittsburgh, Pennsylvania: Software Engineering Institute, Carnegie Mellon
University, July 1988.

[Harrison 90] Harrison, D., Newton, A., Spickelmier, R., and Barnes, T. "Electronic CAD
Frameworks". Proceedings of the IEEE 78, 2 (February 1990): pp. 393-417.

[Henderson 88] Henderson, P., ed. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments.
Boston, Massachusetts: ACM Press, 1988.

[Johnson 89] Johnson, W. "Bringing Design Management to the Open Environment".
High Performance Systems 10, 6 (June 1989): pp. 66-70.

[Katz 90] Katz, R. "Toward a Unified Framework for Version Modeling in Engineering
Databases", ACM Computing Surveys 22, 4 (December 1990): pp. 375-408.

[Leblang 85] Leblang, D. and McLean, G. "Configuration Management for Large-Scale
Software Development Efforts", pp. 122-127. GTE Workshop on Software
Engineering Environments for Programming in the Large. Waltham,
Massachusetts: GTE Laboratories, June 1985.

[Long 91] Long, F., ed. Proceedings of the Software Engineering Environments.
University College of Wales, UK. 25-27 March 1991. Volume 3. London,
England: Ellis Horwood, 1991.

22 CMU/SEI-92-TR-9



[Mahler 88] Mahler, A. and Lampen, A. "shape - A Software Configuration Management
Tool", pp. 228-243. Proceedings of the International Workshop on Software
Version and Configuration Control. Stuttgart, Germany: B. G. Teubner, January
1988.

[Malasky 91] Malasky, Bruce, et al. Framework Architecture Reference. Austin, Texas: CAD
Framework, 1991.

[Marzullo 86] Marzullo, K. and Wiebe, D. "Jasmine: A Software System Modelling Facility",
pp. 121-130. Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments.
New York: ACM, December 1986.

[Oquendo 90] Oquendo, F. "Building Object and Process-Centered Software Environments
on the PCTE Public Tool Interface". Proceedings of the Sixth International
Software Process Workshop, Haikido Japan, Los Alamitos, California: IEEE
Computer Society Press, October 1990.

[Penedo 88] Penedo, M. H. and Riddle, W. E. "Guest Editors' Introduction: Software
Engineering Environment Architectures". IEEE Transactions on Software
Engineering 14, 6 (June 1988): pp. 689-696.

[Perry 911 Perry, D. E. and Kaiser, G. E. "Models of Software Development
Environments". IEEE Transactions on Software Engineering 17, 3 (March
1991): pp. 283-295.

[Ploedereder 89] Ploedereder, E. and Fergany, A. "A Configuration Management Assistant",
pp. 5-14. Proceedings of the Second International Workshop on Software
Configuration Management. New York, New York: ACM, October 1989.

[Rammig 91] Rammig, F. J. and Waxman, R. Electronic Design Automation Frameworks.
IFIP, North Holland: Elsevier Science Publishers, 1991.

[Softool 87] Softool. CCC: Change and Configuration Control Environment. A Functional
Overview. Goleta, California: Softool Corporation, 1987.

[SMDS 89] Software Maintenance & Development Systems, Inc. Aide-De-Camp Software
Management System, Product Overview. Concord, Massachusetts: Software
Maintenance & Development Systems, Inc., 1989.

[Tichy 82] Tichy, W. "Design, Implementation and Evaluation of a Revision Control
System", pp. 58-67. 6th International Conference on Software Engineering
Tokyo. Long Beach, California: IEEE Computer Society, September 1982.

[Whitgift 91] Whitgift, D. Methods and Tools For Software Configuration Management
Chichester, New York: J. Wiley, July 1991.

CMU/SEI-92-TR-9 23



[Zarrella 90] Zarrella, P. F. CASE Tool integration and Standardization (CMU/SEI-90-TR-
14, ADA235640). Pittsburgh, Pennsylvania: Software Engineering Institute,
Carnegie Mellon University, December 1990.

24 CMU/SEI-92-TR-9



UNLIMIrED. UNCLASSIFIED
Scura)RYQSSffCATION WTh PAGR

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

N/A Approved for Public Release
2b. DECLASSIFICAXION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-92-TR-9 ESD-TR-92-009

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7L. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (ifapplicable) SEI Joint Program Office
SEI

6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZiP Code)

Carnegie Mellon University ESD/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

8a. NAME OFFUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) F1962890C0003

SEI Joint Program Office ESD/AVS

8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM RoJEcr TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT' NO NO. NO NO.

63756E N/A N/A N/A

11. 1TILE (Include Security Clasificaton)

Parallels in Computer-Aided Design Framework and Software Development Environment Efforts
12. PERSONAL AUTHOR(S)

Susan A. Dart
13a. TYPE OF REPORT 13b. TIME COVERED T 14. DATE OF REPORT (Y, Ma., Day) 15. PAGE COUNT

Final FROM TO May 1992 30 pp.
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 13. SUBJECT TERMS (Continue ean remse of necesary and identify by block number)

FIELD GROUP SUB GR. configuration management
computer-aided design framework

software development environment

19. ABSTRAF? (Cenime an reve if necessry and identify by block number)

This paper is an attempt to raise awareness about the similarities between the efforts of the software develop-
ment environment (SDE) community and the electronic computer-aided design (CAD) framework community.
Apparently, SDE and CAD engineers are not aware of what is happening in each other's fields, yet cross-fer-
tilization of efforts would assist progress. Both communities are addressing the same problems of providing
configuration management (CM), tool integration, and process management support in their environment.
Each community can benefit from the other since both have similar needs and have found, and are finding,
similar solutions. It is particularly useful to consider collaborative efforts as both communities are evolving
towards standardization.

(Please tum over)

20. DISTRIDUI1ON/AVA1IABILITY OF ABSTRACT 21. ABSTRACT SECURTY CLASSIFICATION

UNCLASSIFTED/UNUM1TED SAME AS RPVDTC USERS* Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22r. OFFICE SYMBOL

John S. Herman, Capt, USAF (412) 268-7631 ESD/AVS (SEI)

DD FORM 1473,33 APR EDrON of I JAN 73 IS OBSOLE UNLIMED, UNCASSIFED
SBElJtIIY CLASCATION OF TIS



ARcr -catnucd frwi page one, block 19


